92%): mp 168 °C (from cyclohexane-benzene); ¹H NMR δ 1.86 (3 H, d, J = 7 Hz), 2.12 (6 H, s), 2.56 (3 H, s), 4.63 (1 H, q, J = 7 Hz), 6.22 (1 H, s), 7.3-8.0 (5 H, m). Anal. Calcd for C₂₀H₁₉Cl₂NO₃S: C, 56.61; H, 4.52; N, 3.30. Found: C, 56.80; H, 4.41; N, 3.13.

Reaction of 1 with Allene 2b. A solution of 1 (5.0 g) and **2b** (4.3 g) in carbon tetrachloride (220 mL) was refluxed for 21 h. The solvent was evaporated under reduced pressure, and the residue was chromatographed on a silica gel column (0.7 kg) with benzene as eluent. First fractions gave some solid material (0.4 g; ¹H NMR δ 2.0–2.8) followed by 3,3'-bis(3,5-dichloro-2,4,6-trimethylphenyl)-5-methyl-5-(phenylsulfonyl)-4,5'-spirobi(2-isoxazoline) (8b) (1.6 g, 11%): mp 240 °C (from hexane-benzene); ¹H NMR δ 1.84, 1.87 (9 H, 2 s), 2.44, 2.48, 2.52, 2.59 (12 H, 4 s), 3.32, 4.65 (2 H, AB type, J = 19.5 Hz), 7.5–7.8 (3 H, m), 8.0–8.2 (2 H, m); ¹³C NMR δ 16.3–19.7, 41.8 (t), 100.0 (s), 101.1 (s), 124.4–136.7, 157.2 (s), 157.6 (s). Anal. Calcd for C₃₀H₂₈Cl₄N₂O₄S: C, 55.05; H, 4.24; N, 4.19. Found: C, 54.97; H, 4.32; N, 4.27. Further elution gave isoxazole **5b** (5.1 g, 55%).

Registry No. 1, 13456-86-5; 2a, 2525-42-0; 2b, 13603-90-2; 3a, 2525-40-8; 3b, 13603-88-8; 4, 2525-41-9; 5a, 96965-01-4; 5b, 96965-05-8; 6, 96965-04-7; 7, 96965-00-3; 8a, 96965-02-5; 8b, 96965-06-9; 9, 96965-03-6; PhSO₂CH₂COCH₃, 5000-44-2.

The Photochemistry of 1-Phenyl-1,2-dihydronaphthalene. A Simple Preparation of *cis*-Dibenzobicyclo[3.3.0]octa-2,7-diene

Wim H. Laarhoven,*[†] Frank A. T. Lijten,[†] and Jan M. M. Smits[‡]

Department of Organic Chemistry and Crystallography Laboratory, Catholic University of Nijmegen, Toernooiveld, 6525 Ed Nijmegen, The Netherlands

Received December 21, 1984

In a previous paper¹ we reported that 1-phenyl-1,2-dihydronaphthalene (1) irradiated with a broad-spectrum lamp in an apolar solvent yields in 4 h, apart from polymeric material, only one product, viz., exo-4-phenylbenzobicyclo[3.1.0]hex-2-ene (exo-4) (Scheme I).

In the paper mentioned¹ we gave arguments for the supposition that the actual product (*exo-4*) originates from the more stable, primary ring opening product cZc-3, formed from PE-1, via a $[\pi^4 a + \pi^2 a]$ photocycloaddition of cZt-3. Furthermore, it was argued that the lifetime of cZc-2 might be too short to give *endo-4* in an analogous way; cZc-2 should undergo rapid photoisomerization to cZc-3 or reversal to 1 or both of them.

In further studies devoted to possible photochemical additions of alcohols to unsaturated systems like 1 and 2, we irradiated 1, dissolved in methanol, in the presence or absence of an acid, using a ca. 254-nm light source to suppress the formation of exo-4. On irradiation for 20 h 1 had completely disappeared, and the reaction mixture contained a novel photoproduct, different from exo-4, which could be readily purified by crystallization. Formation of any photoaddition product could be excluded because the same product was formed even quantitatively when 1 was irradiated with 254-nm light in *hexane* for 24 h.

The mass spectrum ($M^+ = 206$) showed that the product had the same molecular formula as 1 ($C_{18}H_{14}$). The UV spectrum contained two maxima (272 and 265 nm) of nearly equal height, pointing to a benzene derivative

Figure 1. X-ray of 5.

without extended conjugation. The NMR spectrum, containing two multiplets at δ 2.1–2.9 (2 H) and 3.1–3.6 (3 H), a broadened doublet (δ 4.64, 1 H), and a signal of eight aromatic protons (δ 7.0–7.3), added insufficient information to assign a definite structure. X-ray analysis² revealed, however, that the product was *cis*-dibenzo-bicyclo[3.3.0]octa-2,7-diene (5). The molecular configuration is given in Figure 1.

10

7

cZc-9

PA-8

Irradiation of 1, dissolved in CD_3OD , yielded 5 without any incorporation of deuterium. This excludes that 5 is formed via an ionic or radical process.

A mechanism is given in Scheme II. It implies that the product originates from a primary formed intermediate (cZc-2) belonging to the PA conformer of 1. The electrocyclic reaction cZc-2 \rightarrow 6 is similar to the conversion cZc-9 \rightarrow 10 (see Scheme II), which was previously proposed³ to explain the photochemical conversion of 2-phenyl-1,2-di-

-

[†]Department of Organic Chemistry

[‡]Crystallography Laboratory.

⁽¹⁾ Lamberts, J. J. M.; Laarhoven, W. H. Recl. Trav. Chim. Pays-Bas 1984, 103, 131.

⁽²⁾ Smits, J. M. M.; Noordik, J. H.; Beurskens, P. T.; Laarhoven, W. H.; Lijten, F. A. T. J. Crystallogr. Spectrosc. Res., submitted for publication.

⁽³⁾ Lamberts, J. J. M.; Laarhoven, W. H. J. Am. Chem. Soc. 1984, 106, 1736.

hydronaphthalene (8) into the dibenzocyclooctatriene 7. In the latter case the end product (7) might arise from 10 via a 1,3- as well as a 1,5-H shift, but irradiation of suitably deuterated 8 revealed that the final step only proceeds by a 1,5-H shift.

A more general reluctance of compounds like 6 and 10 to undergo 1,3-H shifts might explain that photolysis of 1 does not yield the cyclooctatriene derivative 7 because its formation from 6 is only possible via a 1,3-H shift.

Accepting that the product 5 arises from 6, the experimental conditions (254-nm light, no D incorporation) imply that the conversion of $6 \rightarrow 5$ is a thermal, concerted process. Two methods, viz., $\pi^2 a + \pi^2 a + \sigma^2 s$ (Figure 2a) and $\pi^2 a + \pi^2 s + \sigma^2 a$ (Figure 2b), both thermally allowed, are possible to fulfil the steric requirements necessary for the formation of the cis-fused structure of the product 5.

Repeating the analysis of the NMR spectrum of the reaction mixture, obtained by irradiation of 1 in hexane with a broad-spectrum lamp, revealed that 5 is probably also formed under these conditions but in very small amounts (less than 1%).

Apart from the extension of knowledge about the photochemical behavior of phenyl-substituted dihydronaphthalenes, this study may be of some practical value. Two preparations of 5 have been described in the literature. One of them,⁴ starting from anthracene, requires a six-step procedure and about 136 working hours to give 5 in 64%; the other⁵ starts from cinnamic acid and leads in four steps (ca. 66 h) to an overall yield of 20%. With the photochemical conversion $1 \rightarrow 5$, the latter compound can be obtained in four steps from α -naphthol in 65% yield within 40 h. Especially for the preparation of small samples, it is an attractive, fast, efficient, and simple method.

Experimental Section

The ¹H NMR spectrum was recorded on a Bruker WH90 spectrometer in $CDCl_3$. The mass spectrum was obtained with a VG-7070 mass spectrometer. The UV spectrum was recorded with a Perkin-Elmer 555 instrument.

The preparation of 1 was performed according to the literature.⁶ Irradiations were carried out under anaerobic conditions using 10^{-3} M solutions in methanol or hexane. Monochromatic irradiations (254 nm) were done in a Rayonet photochemical reactor fitted with 254-nm lamps or using Philips bactericidal fluorescent tubes. Products were isolated by evaporation of the solvent and crystallization of the residue from methanol. Compound 5 crystallized as colorless needles and melted at 95 °C (lit. mp 95.0–95.5 °C,⁵ 95 °C⁴): UV (CH₃OH) λ_{max} (log ϵ) 272 nm (3.40), 265 (3.43), λ_{min} 269 nm (3.06); mass spectrum, m/e 206 (M⁺, 100%), 191 (14), 178 (14), 128 (14), 115 (17), 91 (80); NMR (simulated δ from Me₄Si) δ 2.76 (H(4), H(6), $J_{4,5} = J_{5,6} = 3.5$ Hz, $J_{4,4'} = J_{6,6'} = -15.2$ Hz), 3.24 (H(4'), H(6') $J_{4',5} = J_{5,6'} = 7.0$ Hz), 3.40 (H(5) $J_{1,5} = 7.2$ Hz), 4.64 (H(1)), 7.0–7.3 (arom).

Registry No. 1, 16606-46-5; 5, 14090-18-7.

Asymmetric Reductions by NaBH₄ of Ketone- β -Cyclodextrin Complexes

Roberto Fornasier, Fabiano Reniero, Paolo Scrimin,* and Umberto Tonellato*

Centro "Meccanismi di Reazioni Organiche" del C.N.R., Istituto di Chimica Organica, Università di Padova, 35131 Padova, Italy

Received October 16, 1984

The asymmetric reduction of prochiral ketones has been successfully achieved by using chirally modified metal hydrides.¹ Significant asymmetric inductions have also been obtained by the use of achiral reagents in a chiral environment: a 32% optical yield (o.y.) (phenyl *tert*-butyl ketone) was observed in the sodium borohydride reduction in the presence of optically active catalysts under phasetransfer conditions,² and up to 78% o.y. (propiophenone) was achieved in the sodium borohydride reduction of ketones bound to the chiral domains of bovine serum albumin.³

Cyclodextrins may also provide a chiral binding site⁴ capable of including guest ketones and induce "template-directed" chiral reductions. One limited study^{3a} reported on a very limited success: carbinols in 0-10% o.v. were obtained from three trifluoromethyl aryl ketones in the presence of a ten-fold molar excess of β -cyclodextrin $(\beta$ -CD) over the substrate in alkaline aqueous solution. A growing number of reports of successful use of cyclodextrins to achieve kinetic resolutions of racemic substrates⁵ or optical induction in reactions involving prochiral centers⁶ led us to investigate in more detail the use of these host molecules in the sodium borohydride asymmetric reduction of prochiral ketones. Preliminary experiments carried out in a variety of conditions (in aqueous, DMF, Me₄SO solutions) using different ratios of reactants and cyclodextrins resulted in low optical inductions, about 8% and 7% o.y. at best with 1-naphthyl methyl ketone and 4-phenyl-3-buten-2-one.

We found and here report that significant improvements on these inductions can be obtained by reducing preformed 1:1 β -CD-ketone complexes suspended in a sodium borohydride aqueous alkaline (0.2 M sodium carbonate) solution. After disappearance of the ketone, the reactions were extracted with ether and the resulting alcohols analyzed to ascertain their purity and optical activity and evaluate the o.y.'s.⁷ In a few cases where the specific rotation of

0022-3263/85/1950-3209\$01.50/0 © 1

⁽⁴⁾ Cristol, S. J.; Jarris, B. B. J. Am. Chem. Soc. 1967, 89, 401.
(5) Baker, W.; McOrnic, J. F. W.; Parfitt, S. D.; Watlims, D. A. M. J. Chem. Soc. 1957, 4026.

⁽⁶⁾ Houben-Weyl, "Methoden der Organische Chemie"; Georg Thieme Verlag: Stuttgart, 1976; Vol. VII 2b, p. 1710.

 ^{(1) (}a) Morrison, J. D.; Mosher, H. S. "Asymmetric Organic Reactions"; Prentice Hall: Englewood Cliffs, NJ, 1971. (b) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1978, 10, 175. (c) ApSimon, J. W.; Seguin, R. P. Tetrahedron. 1979, 35, 2797. (d) Valentine, D., Jr.; Scott, J. W. Synthesis 1978, 329. (e) Mosher, H. S.; Morrison, J. D. Science (Washington, D.C., 1883-) 1983, 221, 1013 and references therein.

^{(2) (}a) Balcells, J.; Colonna, S.; Fornasier, R. Synthesis 1976, 266. (b) Colonna, S.; Fornasier, R.; Pfeiffer, U. J. Chem. Soc., Perkin Trans. 1 1978, 8. (c) Colonna, S.; Fornasier, R. Ibid. 1978, 371.

^{(3) (}a) Baba, N.; Matsumara, Y.; Sugimoto, T. Tetrahedron Lett. 1968, 4281. (b) Sugimoto, T.; Kokubo, T.; Matsumara, Y.; Miyazaki, J.; Tanimoto, S.; Okano, M. Bioorg. Chem. 1981, 10, 104.

⁽⁴⁾ For recent reviews, see: Szejtli, J. "Cyclodextrins and their Inclusion Complexes"; Akademiai Kiado: Budapest, 1982. Fendler, J. F. "Membrane Mimetic Chemistry"; Wiley: New York, 1982.

^{(5) (}a) Trainor, G. L.; Breslow, R. J. Am. Chem. Soc. 1981, 103, 154.
(b) Breslow, R.; Trainor, G.; Ueno, A. Ibid. 1983, 105, 2739. (c) van Hooidonk, C.; Gross, C. Recl. Trav. Chim. Pay-Bas 1970, 89, 845. (d) Fornasier, R.; Scrimin, P.; Tonellato, U. Tetrahedron Lett. 1983, 5541. (6) (a) Tanaka, Y.; Sakuraba, H.; Nakanishi, H. J. Chem. Soc., Chem. Commun. 1983, 947. (b) Banfi, S.; Colonna, S. Synth. Commun. 1983, 13, 1049. (c) Czarnik, A. W. J. Org. Chem. 1984, 49, 924.